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MONITORS 
 

 Although semaphores provide a convenient and effective 

mechanism for process synchronization, using them 

incorrectly can result in timing errors. 

 That are difficult to detect, since these errors happen only 

if some particular execution sequences take place and these 

sequences do not always occur. 

 These difficulties will arise even if a single process is not 

well behaved.  

 This situation may be caused by an honest programming 

error or an uncooperative programmer. 

 Example1: 

Suppose that a process interchanges the order in which the 

wait() and signal() operations on the semaphore mutex are 

executed, resulting in the following execution: 

signal(mutex); 

critical section 

wait(mutex); 

In this situation, several processes may be executing in 

their critical sections simultaneously, violating the mutual-

exclusion requirement. 

 Example2: 

Suppose that a process replaces signal (mutex) with wait 

(mutex).  

wait(mutex); 

critical section 
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wait(mutex); 

In this case, a deadlock will occur. 

 Example3: 

Suppose that a process omits the wait (mutex), or the 

signal (mutex), or both. In this case, either mutual 

exclusion is violated or a deadlock will occur. 

 These examples illustrate that various types of errors can 

be generated easily when programmers use semaphores 

incorrectly to solve the critical-section problem. 

 To deal with such errors, researchers have developed a 

high-level language construct called Monitors. 

Usage 

 An abstract data type- or ADT- encapsulates private data 

with public methods to operate on that data.  

 A monitor type is an ADT which presents a set of 

programmer-defined operations that are provided 

mutual exclusion within the monitor.  

 The monitor type also contains the declaration of 

variables whose values define the state of an instance of 

that type, along with the bodies of procedures or 

functions that operate on those variables. 

 The representation of a monitor type cannot be used 

directly by the various processes.  

 A procedure defined within a monitor can access only 

those variables declared locally within the monitor and its 

formal parameters.  
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 The local variables of a monitor can be accessed by only 

the local procedures. 

 

 The monitor construct ensures that only one process at a 

time is active within the monitor.  

 The programmer does not need to code this 

synchronization constraint explicitly 
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 We can define additional synchronization mechanisms 

using the condition construct.  

 A programmer who needs to write a synchronization 

scheme can define one or more variables of type 

condition: 

condition x, y; 

 The only operations that can be invoked on a condition 

variable are wait() and signal().  

 The operation x.wait(); means that the process invoking 

this operation is suspended until another process invokes 

x.signal(); 
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 The x.signal() operation resumes exactly one suspended 

process. If no process is suspended, then the signal() 

operation has no effect; that is, the state of x is the same as 

if the operation had never been executed 

 This is a contrast with the signal() operation associated 

with semaphores, which always affects the state of the 

semaphore. 

 

 Suppose that, when the x. signal () operation is invoked by 

a process P, there exists a suspended process Q associated 

with condition x.  

 Two possibilities exist: 
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1. Signal and wait. P either waits until Q leaves the 

monitor or waits for another condition. 

2. Signal and continue. Q either waits until P leaves the 

monitor or waits for another condition. 

 Usually we follow Signal and wait. 

Example for Monitor 
 

 Consider the ResourceAllocator monitor, which controls 

the allocation of a single resource among competing 

processes.  

 Each process, when requesting an allocation of this 

resource, specifies the maximum time it plans to use the 

resource. 

R.acquire(t); 

... 

access the resource; 

... 

R.release(); 
 

where R is an instance of type ResourceAllocator. 
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Implementing Monitor Using Semaphores 

 For each monitor, a semaphore mutex (initialized to 1) is 

provided. 

 A process must execute wait (mutex) before entering the 

monitor and must execute signal (mutex) after leaving the 

monitor. 

 It follows signal and wait scheme. Since a signaling 

process must wait until the resumed process leaves or 

waits, an additional semaphore, next, is introduced, 
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initialized to 0. The signaling processes can use next to 

suspend themselves.  

 An integer variable next_count is also provided to count 

the number of processes suspended on next.  

 Each external procedure F is replaced by: 

 

 Mutual exclusion within a monitor is thus ensured. 

 For each condition x, we introduce a semaphore x_sem 

and an integer variable x_count, both initialized to 0.  

 The operation x. wait() can be implemented as 

 
 The operation x.signal() can be implemented as 
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Resuming Processes within a Monitor 

 If several processes are suspended on condition x, and an 

x. signal() operation is executed by some process, then we 

should  determine which of the suspended processes should 

be resumed next. 

  One simple solution is to use an FCFS (First Come First 

Serve) ordering, so that the process that has been waiting 

the longest is resumed first. 

  In many circumstances, such a simple scheduling scheme 

is not adequate. For this purpose, the conditional-wait 

construct can be used. 

 It has the form x.wait(c); the value of c, which is called a 

priority number is then stored with the name of the 

process that is suspended.  

 When x. signal () is executed, the process with the smallest 

priority number is resumed next. 

 Eg: Consider the ResourceAllocator monitor  

 The monitor allocates the resource to the process that 

has the shortest time-allocation request. 
 

 

CLASSICAL PROBLEMS OF SYNCHRONIZATION 
 

1. Producer – Consumer Problem 

(Bounded Buffer Problem) 

2. Readers – Writers Problem 

3. Dining Philosophers Problem 
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PRODUCER – CONSUMER PROBLEM 

 A producer process produces an item that is consumed 

by a consumer process. 

 Example, a compiler may produce assembly code, which is 

consumed by an assembler. The assembler, in turn, 

produces object modules, which are consumed by the 

loader. 

 Producer and Consumer processes work concurrently 

in a cooperating manner  

 This problem is the best example for process 

synchronization 

 Consumer should consume only those items that 

Producer has already produced 

 One solution to the producer-consumer problem uses 

shared memory.  

 To allow producer and consumer processes to run 

concurrently, we must have a common buffer of items 

that can be filled by the producer and emptied by the 

consumer. (Shared buffer) 

 This buffer will reside in a region of memory that is shared 

by the producer and consumer processes.  

 A producer can produce one item while the consumer is 

consuming another item.  

 The producer and consumer must be synchronized, so 

that the consumer does not try to consume an item that 

has not yet been produced. 
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 Two types of buffers can be used.  

1. Unbounded Buffer 

2. Bounded Buffer 

 The unbounded buffer places no practical limit on the size 

of the buffer. The consumer may have to wait for new 

items, but the producer can always produce new items.  

 The bounded buffer assumes a fixed buffer size. In this 

case, the consumer must wait if the buffer is empty, and 

the producer must wait if the buffer is full. 

 We focus more on bounded buffer. So the problem is 

also called bounded buffer problem 

 The following variables reside in a region of  memory 

shared by the producer and consumer processes: 

 

 The shared buffer is implemented as a circular array 

with two logical pointers: in and out.  

 The variable in points to the next free position in the 

buffer; // used by Producer 
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 out points to the first full position in the buffer. // used by 

Consumer 

 The buffer is empty when in== out;  

 The buffer is full when ((in+ 1)% BUFFER_SIZE) == out. 

 The producer process has a local variable nextProduced in 

which the new item to be produced is stored.  

 The consumer process has a local variable nextConsumed 

in which the item to be consumed is stored. 

 This scheme allows at most BUFFER_SIZE - 1 items in 

the buffer at the same time. 
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 Since common resource is used, critical session problem 

arises and we can solve it by using semaphores. 

 The mutex semaphore provides mutual exclusion for 

accesses to the buffer pool and is initialized to the value 1. 

(It is a binary semaphore) 

 The empty and full semaphores count the number of 

empty and full buffers. (They are counting semaphores) 

 The semaphore empty is initialized to the value 

BUFFERSIZE; the semaphore full is initialized to the 

value 0. 
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THE READERS-WRITERS PROBLEM 

 Suppose that a database is to be shared among several 

concurrent processes.  

 Some of these processes may want only to read the 

database (Reader), whereas others may want to update the 

database (Writer)  

 If two readers access the shared data simultaneously, no 

conflicts.  

 If a writer and some other process (either a reader or a 

writer) access the database simultaneously, conflicts may 

arise. 

 Ensure that the writers have exclusive access to the shared 

database while writing to the database.  
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 This synchronization problem is referred to as the readers-

writers problem. 

 The readers-writers problem has several variations. 

 The first readers-writers problem, requires that no reader 

be kept waiting unless a writer has already obtained 

permission to use the shared object.  

 In other words, no reader should wait for other readers to 

finish simply because a writer is waiting.  

 The second readers-writers problem requires that, once a 

writer is ready, that writer performs its write as soon as 

possible.  

 In other words, if a writer is waiting to access the object, 

no new readers may start reading. 

 A solution to either problem may result in starvation.  

 In the first case, writers may starve; in the second case, 

readers may starve. 

 In the solution to the first readers-writers problem, the 

reader processes share the following data structures: 

semaphore mutex, wrt; 

int readcount; 

 The semaphores mutex and wrt are initialized to 1; 

readcount is initialized to 0.  

 The semaphore wrt is common to both reader and writer 

processes. 

 The mutex semaphore is used to ensure mutual exclusion 

when the variable readcount is updated.  
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 The readcount variable keeps track of how many processes 

are currently reading the object.  

 The semaphore wrt functions as a mutual-exclusion 

semaphore for the writers.  

 It is also used by the first or last reader that enters or exits 

the critical section. 

 If a writer is in the critical section and n readers are 

waiting, then one reader is queued on wrt, and n- 1 readers 

are queued on mutex.  

 When a writer executes signal (wrt), we may resume the 

execution of either all the waiting readers or a single 

waiting writer. The selection is made by the scheduler. 
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 The readers-writers problem and its solutions have been 

generalized to provide reader-writer locks  

 Acquiring a reader-writer lock requires specifying the 

mode of the lock either read or write access.  

 When a process wishes only to read shared data, it requests 

the reader-writer lock in read mode; a process wishing to 

modify the shared data must request the lock in write 

mode.  

 Multiple processes are permitted to concurrently acquire a 

reader-writer lock in read mode, but only one process may 

acquire the lock for writing, as exclusive access is required 

for writers. 

 Reader-writer locks are most useful in the following 

situations: 
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 In applications where it is easy to identify which 

processes only read shared data and which 

processes only write shared data. 

 In applications that have more readers than writers. 

This is because reader-writer locks generally require 

more overhead to establish than semaphores. The 

increased concurrency of allowing multiple readers 

compensates for the overhead involved in setting up 

the reader-writer lock. 

 

THE DINING-PHILOSOPHERS PROBLEM 
 

 Consider five philosophers who spend their lives 

thinking and eating.  

 The philosophers share a circular table surrounded by 

five chairs, each belonging to one philosopher.  

 In the center of the table is a bowl of rice, and the table is 

laid with five single chopsticks  

 When a philosopher thinks, she does not interact with her 

colleagues.  

 From time to time, a philosopher gets hungry and tries to 

pick up the two chopsticks that are closest to her (the 

chopsticks that are between her and her left and right 

neighbors).  
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 A philosopher may pick up only one chopstick at a time. 

Obviously, she cannot pick up a chopstick that is already in 

the hand of a neighbor.  

 When a hungry philosopher has both her chopsticks at the 

same time, she eats without releasing her chopsticks.  

 When she is finished eating, she puts down both of her 

chopsticks and starts thinking again. 

 This problem is an example of a large class of 

concurrency-control problems.  

 It is a simple representation of the need to allocate 

several resources among several processes in a 

deadlock-free and starvation-free manner. 

 One simple solution is to represent each chopstick with a 

semaphore.  

 A philosopher tries to grab a chopstick by executing a 

wait() operation on that semaphore; she releases her 
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chopsticks by executing the signal() operation on the 

appropriate semaphores.  

 Thus, the shared data are 

semaphore chopstick[5]; 

where all the elements of chopstick are initialized to 1.  

 The structure of philosopher i can be written as: 

 

 Although this solution guarantees that no two neighbors 

are eating simultaneously, it must be rejected because it 

could create a deadlock.  

 Suppose that all five philosophers become hungry 

simultaneously and each grabs her left chopstick. All the 

elements of chopstick will now be equal to 0. When each 

philosopher tries to grab her right chopstick, she will be 

delayed forever. 

 Several possible remedies to the deadlock problem are: 
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 Allow at most four philosophers to be sitting 

simultaneously at the table. 

 Allow a philosopher to pick up her chopsticks only if 

both chopsticks are available (to do this, she must pick 

them up in a critical section). 

 Use an asymmetric solution; that is, an odd 

philosopher picks up first her left chopstick and then 

her right chopstick, whereas an even philosopher picks 

up her right chopstick and then her left chopstick 

 Any satisfactory solution to the dining-philosophers 

problem must eliminate the possibility that one of the 

philosophers will starve to death. 

 We can use monitors to solve the dining-philosophers 

problem that ensures freedom from deadlocks. 

 A deadlock-free solution does not necessarily eliminate the 

possibility of starvation. 
 

Dining-Philosophers Solution Using Monitors 
 

 This solution imposes the restriction that a philosopher 

may pick up her chopsticks only if both of them are 

available. 

 Three states for a philosopher. 

1. Thinking 

2. Hungry 

3. Eating 

which can be represented using an enum array 
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enum {THINKING, HUNGRY, EATING} state[5]; 

 Philosopher i can set the variable state [i] = EATING only 

if her two neighbors are not eating: (state [ (i +4) % 5] ! = 

EATING) and (state [ (i +1)% 5] != EATING). 

 We also need to declare condition self[5]; in which 

philosopher i can delay herself when she is hungry but is 

unable to obtain the chopsticks she needs. 

 The distribution of the chopsticks is controlled by the 

monitor 

 Each philosopher, before starting to eat, must invoke the 

operation pickup(). This act may result in the suspension 

of the philosopher process.  

 After the successful completion of this operation, the 

philosopher may eat.  

 Following this, the philosopher invokes the putdown() 

operation.  

 Thus, philosopher i must invoke the operations in the 

following sequence: 

DiningPhilosophers.pickup(i); 

//eat 

DiningPhilosophers.putdown(i); 
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 This solution ensures that no two neighbors are eating 

simultaneously and that no deadlocks will occur.  
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 However, that it is possible for a philosopher to starve to 

death. 

 

 

 


