
D e p t o f C S E , M B I T S Page 1

MONITORS

 Although semaphores provide a convenient and effective

mechanism for process synchronization, using them

incorrectly can result in timing errors.

 That are difficult to detect, since these errors happen only

if some particular execution sequences take place and these

sequences do not always occur.

 These difficulties will arise even if a single process is not

well behaved.

 This situation may be caused by an honest programming

error or an uncooperative programmer.

 Example1:

Suppose that a process interchanges the order in which the

wait() and signal() operations on the semaphore mutex are

executed, resulting in the following execution:

signal(mutex);

critical section

wait(mutex);

In this situation, several processes may be executing in

their critical sections simultaneously, violating the mutual-

exclusion requirement.

 Example2:

Suppose that a process replaces signal (mutex) with wait

(mutex).

wait(mutex);

critical section

D e p t o f C S E , M B I T S Page 2

wait(mutex);

In this case, a deadlock will occur.

 Example3:

Suppose that a process omits the wait (mutex), or the

signal (mutex), or both. In this case, either mutual

exclusion is violated or a deadlock will occur.

 These examples illustrate that various types of errors can

be generated easily when programmers use semaphores

incorrectly to solve the critical-section problem.

 To deal with such errors, researchers have developed a

high-level language construct called Monitors.

Usage

 An abstract data type- or ADT- encapsulates private data

with public methods to operate on that data.

 A monitor type is an ADT which presents a set of

programmer-defined operations that are provided

mutual exclusion within the monitor.

 The monitor type also contains the declaration of

variables whose values define the state of an instance of

that type, along with the bodies of procedures or

functions that operate on those variables.

 The representation of a monitor type cannot be used

directly by the various processes.

 A procedure defined within a monitor can access only

those variables declared locally within the monitor and its

formal parameters.

D e p t o f C S E , M B I T S Page 3

 The local variables of a monitor can be accessed by only

the local procedures.

 The monitor construct ensures that only one process at a

time is active within the monitor.

 The programmer does not need to code this

synchronization constraint explicitly

D e p t o f C S E , M B I T S Page 4

 We can define additional synchronization mechanisms

using the condition construct.

 A programmer who needs to write a synchronization

scheme can define one or more variables of type

condition:

condition x, y;

 The only operations that can be invoked on a condition

variable are wait() and signal().

 The operation x.wait(); means that the process invoking

this operation is suspended until another process invokes

x.signal();

D e p t o f C S E , M B I T S Page 5

 The x.signal() operation resumes exactly one suspended

process. If no process is suspended, then the signal()

operation has no effect; that is, the state of x is the same as

if the operation had never been executed

 This is a contrast with the signal() operation associated

with semaphores, which always affects the state of the

semaphore.

 Suppose that, when the x. signal () operation is invoked by

a process P, there exists a suspended process Q associated

with condition x.

 Two possibilities exist:

D e p t o f C S E , M B I T S Page 6

1. Signal and wait. P either waits until Q leaves the

monitor or waits for another condition.

2. Signal and continue. Q either waits until P leaves the

monitor or waits for another condition.

 Usually we follow Signal and wait.

Example for Monitor

 Consider the ResourceAllocator monitor, which controls

the allocation of a single resource among competing

processes.

 Each process, when requesting an allocation of this

resource, specifies the maximum time it plans to use the

resource.

R.acquire(t);

...

access the resource;

...

R.release();

where R is an instance of type ResourceAllocator.

D e p t o f C S E , M B I T S Page 7

Implementing Monitor Using Semaphores

 For each monitor, a semaphore mutex (initialized to 1) is

provided.

 A process must execute wait (mutex) before entering the

monitor and must execute signal (mutex) after leaving the

monitor.

 It follows signal and wait scheme. Since a signaling

process must wait until the resumed process leaves or

waits, an additional semaphore, next, is introduced,

D e p t o f C S E , M B I T S Page 8

initialized to 0. The signaling processes can use next to

suspend themselves.

 An integer variable next_count is also provided to count

the number of processes suspended on next.

 Each external procedure F is replaced by:

 Mutual exclusion within a monitor is thus ensured.

 For each condition x, we introduce a semaphore x_sem

and an integer variable x_count, both initialized to 0.

 The operation x. wait() can be implemented as

 The operation x.signal() can be implemented as

D e p t o f C S E , M B I T S Page 9

Resuming Processes within a Monitor

 If several processes are suspended on condition x, and an

x. signal() operation is executed by some process, then we

should determine which of the suspended processes should

be resumed next.

 One simple solution is to use an FCFS (First Come First

Serve) ordering, so that the process that has been waiting

the longest is resumed first.

 In many circumstances, such a simple scheduling scheme

is not adequate. For this purpose, the conditional-wait

construct can be used.

 It has the form x.wait(c); the value of c, which is called a

priority number is then stored with the name of the

process that is suspended.

 When x. signal () is executed, the process with the smallest

priority number is resumed next.

 Eg: Consider the ResourceAllocator monitor

 The monitor allocates the resource to the process that

has the shortest time-allocation request.

CLASSICAL PROBLEMS OF SYNCHRONIZATION

1. Producer – Consumer Problem

(Bounded Buffer Problem)

2. Readers – Writers Problem

3. Dining Philosophers Problem

D e p t o f C S E , M B I T S Page 10

PRODUCER – CONSUMER PROBLEM

 A producer process produces an item that is consumed

by a consumer process.

 Example, a compiler may produce assembly code, which is

consumed by an assembler. The assembler, in turn,

produces object modules, which are consumed by the

loader.

 Producer and Consumer processes work concurrently

in a cooperating manner

 This problem is the best example for process

synchronization

 Consumer should consume only those items that

Producer has already produced

 One solution to the producer-consumer problem uses

shared memory.

 To allow producer and consumer processes to run

concurrently, we must have a common buffer of items

that can be filled by the producer and emptied by the

consumer. (Shared buffer)

 This buffer will reside in a region of memory that is shared

by the producer and consumer processes.

 A producer can produce one item while the consumer is

consuming another item.

 The producer and consumer must be synchronized, so

that the consumer does not try to consume an item that

has not yet been produced.

D e p t o f C S E , M B I T S Page 11

 Two types of buffers can be used.

1. Unbounded Buffer

2. Bounded Buffer

 The unbounded buffer places no practical limit on the size

of the buffer. The consumer may have to wait for new

items, but the producer can always produce new items.

 The bounded buffer assumes a fixed buffer size. In this

case, the consumer must wait if the buffer is empty, and

the producer must wait if the buffer is full.

 We focus more on bounded buffer. So the problem is

also called bounded buffer problem

 The following variables reside in a region of memory

shared by the producer and consumer processes:

 The shared buffer is implemented as a circular array

with two logical pointers: in and out.

 The variable in points to the next free position in the

buffer; // used by Producer

D e p t o f C S E , M B I T S Page 12

 out points to the first full position in the buffer. // used by

Consumer

 The buffer is empty when in== out;

 The buffer is full when ((in+ 1)% BUFFER_SIZE) == out.

 The producer process has a local variable nextProduced in

which the new item to be produced is stored.

 The consumer process has a local variable nextConsumed

in which the item to be consumed is stored.

 This scheme allows at most BUFFER_SIZE - 1 items in

the buffer at the same time.

D e p t o f C S E , M B I T S Page 13

 Since common resource is used, critical session problem

arises and we can solve it by using semaphores.

 The mutex semaphore provides mutual exclusion for

accesses to the buffer pool and is initialized to the value 1.

(It is a binary semaphore)

 The empty and full semaphores count the number of

empty and full buffers. (They are counting semaphores)

 The semaphore empty is initialized to the value

BUFFERSIZE; the semaphore full is initialized to the

value 0.

D e p t o f C S E , M B I T S Page 14

THE READERS-WRITERS PROBLEM

 Suppose that a database is to be shared among several

concurrent processes.

 Some of these processes may want only to read the

database (Reader), whereas others may want to update the

database (Writer)

 If two readers access the shared data simultaneously, no

conflicts.

 If a writer and some other process (either a reader or a

writer) access the database simultaneously, conflicts may

arise.

 Ensure that the writers have exclusive access to the shared

database while writing to the database.

D e p t o f C S E , M B I T S Page 15

 This synchronization problem is referred to as the readers-

writers problem.

 The readers-writers problem has several variations.

 The first readers-writers problem, requires that no reader

be kept waiting unless a writer has already obtained

permission to use the shared object.

 In other words, no reader should wait for other readers to

finish simply because a writer is waiting.

 The second readers-writers problem requires that, once a

writer is ready, that writer performs its write as soon as

possible.

 In other words, if a writer is waiting to access the object,

no new readers may start reading.

 A solution to either problem may result in starvation.

 In the first case, writers may starve; in the second case,

readers may starve.

 In the solution to the first readers-writers problem, the

reader processes share the following data structures:

semaphore mutex, wrt;

int readcount;

 The semaphores mutex and wrt are initialized to 1;

readcount is initialized to 0.

 The semaphore wrt is common to both reader and writer

processes.

 The mutex semaphore is used to ensure mutual exclusion

when the variable readcount is updated.

D e p t o f C S E , M B I T S Page 16

 The readcount variable keeps track of how many processes

are currently reading the object.

 The semaphore wrt functions as a mutual-exclusion

semaphore for the writers.

 It is also used by the first or last reader that enters or exits

the critical section.

 If a writer is in the critical section and n readers are

waiting, then one reader is queued on wrt, and n- 1 readers

are queued on mutex.

 When a writer executes signal (wrt), we may resume the

execution of either all the waiting readers or a single

waiting writer. The selection is made by the scheduler.

D e p t o f C S E , M B I T S Page 17

 The readers-writers problem and its solutions have been

generalized to provide reader-writer locks

 Acquiring a reader-writer lock requires specifying the

mode of the lock either read or write access.

 When a process wishes only to read shared data, it requests

the reader-writer lock in read mode; a process wishing to

modify the shared data must request the lock in write

mode.

 Multiple processes are permitted to concurrently acquire a

reader-writer lock in read mode, but only one process may

acquire the lock for writing, as exclusive access is required

for writers.

 Reader-writer locks are most useful in the following

situations:

D e p t o f C S E , M B I T S Page 18

 In applications where it is easy to identify which

processes only read shared data and which

processes only write shared data.

 In applications that have more readers than writers.

This is because reader-writer locks generally require

more overhead to establish than semaphores. The

increased concurrency of allowing multiple readers

compensates for the overhead involved in setting up

the reader-writer lock.

THE DINING-PHILOSOPHERS PROBLEM

 Consider five philosophers who spend their lives

thinking and eating.

 The philosophers share a circular table surrounded by

five chairs, each belonging to one philosopher.

 In the center of the table is a bowl of rice, and the table is

laid with five single chopsticks

 When a philosopher thinks, she does not interact with her

colleagues.

 From time to time, a philosopher gets hungry and tries to

pick up the two chopsticks that are closest to her (the

chopsticks that are between her and her left and right

neighbors).

D e p t o f C S E , M B I T S Page 19

 A philosopher may pick up only one chopstick at a time.

Obviously, she cannot pick up a chopstick that is already in

the hand of a neighbor.

 When a hungry philosopher has both her chopsticks at the

same time, she eats without releasing her chopsticks.

 When she is finished eating, she puts down both of her

chopsticks and starts thinking again.

 This problem is an example of a large class of

concurrency-control problems.

 It is a simple representation of the need to allocate

several resources among several processes in a

deadlock-free and starvation-free manner.

 One simple solution is to represent each chopstick with a

semaphore.

 A philosopher tries to grab a chopstick by executing a

wait() operation on that semaphore; she releases her

D e p t o f C S E , M B I T S Page 20

chopsticks by executing the signal() operation on the

appropriate semaphores.

 Thus, the shared data are

semaphore chopstick[5];

where all the elements of chopstick are initialized to 1.

 The structure of philosopher i can be written as:

 Although this solution guarantees that no two neighbors

are eating simultaneously, it must be rejected because it

could create a deadlock.

 Suppose that all five philosophers become hungry

simultaneously and each grabs her left chopstick. All the

elements of chopstick will now be equal to 0. When each

philosopher tries to grab her right chopstick, she will be

delayed forever.

 Several possible remedies to the deadlock problem are:

D e p t o f C S E , M B I T S Page 21

 Allow at most four philosophers to be sitting

simultaneously at the table.

 Allow a philosopher to pick up her chopsticks only if

both chopsticks are available (to do this, she must pick

them up in a critical section).

 Use an asymmetric solution; that is, an odd

philosopher picks up first her left chopstick and then

her right chopstick, whereas an even philosopher picks

up her right chopstick and then her left chopstick

 Any satisfactory solution to the dining-philosophers

problem must eliminate the possibility that one of the

philosophers will starve to death.

 We can use monitors to solve the dining-philosophers

problem that ensures freedom from deadlocks.

 A deadlock-free solution does not necessarily eliminate the

possibility of starvation.

Dining-Philosophers Solution Using Monitors

 This solution imposes the restriction that a philosopher

may pick up her chopsticks only if both of them are

available.

 Three states for a philosopher.

1. Thinking

2. Hungry

3. Eating

which can be represented using an enum array

D e p t o f C S E , M B I T S Page 22

enum {THINKING, HUNGRY, EATING} state[5];

 Philosopher i can set the variable state [i] = EATING only

if her two neighbors are not eating: (state [(i +4) % 5] ! =

EATING) and (state [(i +1)% 5] != EATING).

 We also need to declare condition self[5]; in which

philosopher i can delay herself when she is hungry but is

unable to obtain the chopsticks she needs.

 The distribution of the chopsticks is controlled by the

monitor

 Each philosopher, before starting to eat, must invoke the

operation pickup(). This act may result in the suspension

of the philosopher process.

 After the successful completion of this operation, the

philosopher may eat.

 Following this, the philosopher invokes the putdown()

operation.

 Thus, philosopher i must invoke the operations in the

following sequence:

DiningPhilosophers.pickup(i);

//eat

DiningPhilosophers.putdown(i);

D e p t o f C S E , M B I T S Page 23

 This solution ensures that no two neighbors are eating

simultaneously and that no deadlocks will occur.

D e p t o f C S E , M B I T S Page 24

 However, that it is possible for a philosopher to starve to

death.

